“黎曼于1859年发表了一篇论文,名为《论不大于一个给定值的素数的个数》,只有8页纸,这是他唯一公开发表的数论论文。”
“正是这区区8页纸,为解析数论奠定了基础。”
“可见名垂青史不见得需要字数多,文章质量永远排名第一。”
“我们并不清楚1859年的黎曼是基于什么理由做出这样的猜想,或许是一种天才的直觉。
“rh相当于说,Ξ(w)的全部零点都是实的。”
“黎曼又说,当然对此需要作出证明,他做过这样的证明,因为一个核心表达式未简化到可公开的程度,故没有发表。这是数论史上最大的一个谜团。”
“类似上面的这些话,你可以在任何一本数学书籍或者任何一篇论文中看到,但接下来笔者描述的内容,为首度发表的原创……”
沈奇满怀激情的编写他的《数论史》,有干货了,写作热情就是高涨啊。
“设黎曼ζ函数的非显然零点集合为:
{p1,1-p1,p2,1-p2,……,pk,1-pk,……pn,1-pn}
该集合式示意为:
凡是具有‘和值为1,虚部绝对值相同’特征的两个非显然零点,就匹配为一对。
为便于称呼,笔者将这种新的处理方式称为‘双生匹配法’。
下面,笔者将通过‘双生匹配法’推导出ζ(s)的核心表达式。”
沈奇奋笔疾书,ζ(s)的核心表达式真要被自己推导出来了,黎曼猜想真要被自己证明了,那这本《数论史》绝对会大卖特卖,一书成神呐!
“双生匹配法”是沈奇刚刚悟出来的灵感,他的原创。
数字游戏终有结束的一天,沈奇决定结束黎曼猜想这个游戏。
兴奋的睡不着觉,沈奇一直干的天亮。
“所以在‘双生匹配法’的处理下,ζ(s)的核心表达式应该是:ζ(s)=e^a+bsn∞n=1(1-s/pn)(1-s/1-pn)e^(s/pn+s/1-pn)……原来是这样……”
沈奇站了起来,舒了舒筋骨,他一脸平静的看着窗外初升的朝阳,笑了。
数字游戏并未结束,但沈奇找到了正确的途径,这是非常重要的突破。
“所以,黎曼所提及的那个未公开的表达式,并不是一个,而是两个,甚至三个,‘个’这个词描述不当,应该是‘组’,完全证明黎曼猜想,需要一组核心表达式。”
沈奇奋战一夜,发现了一个天大的秘密,全世界都被黎曼给耍了,耍了一百多年。
黎曼究竟是因为笔误,还是故意写错的,那就没人能说清楚了。
这个天大的秘密,沈奇通过电话第一时间告诉了女朋友:“我想我找到解决rh的办法了,我自创了一种新的处理方法,我跟你说说大概的设定……”
“口说无凭,我要看式子!”电话那头的欧叶激动了。
沈奇:“如果按照我的‘双生匹配法’设定,证明rh的核心表达式应该有一组,我已推导出其中一个。下周我准备去哥大拜访龚教授,他是这方面的顶级专家,我想听听他的意见和建议。下周给你看式子,我需要完善一下。”
欧叶:“说一个月后来看我,真就一个月。好吧,下周见。”
挂了电话,沈奇睡了一会儿,起床后,他继续推导理论上存在的另外的表达式。
然而问题是,基于“双生匹配法”和第一个表达式,无论如何也得不到第二个表达式。
“哎,甜头是尝到了一点点,可我想得到全部,要是能升到13级就好了。”沈奇看了看系统,12级升13级需要400万点学霸积分,意味着要再发10篇以上的四大期刊论文。
从前年9月到现在,一年半过去了,沈奇也就发了三篇四大期刊论文,十篇新的四大期刊论文,得好几年呀。
“我需要广泛听取群众的意见,充分利用普林斯顿的优势资源,通过团队力量赢得这场重要战役。”
沈奇朝穆勒教授的办公室走去,他知道穆勒教授的脑子是清醒的。
一年前,穆勒安排沈奇和玛丽联合完成一个课题,推导出ζ(s)的两个递推表达式。
因为各种原因,这个课题搞砸了。
但穆勒教授的直觉是准确的,他就是德国人,他肯定研究过黎曼的德文版手稿。
穆勒教授早就预感到了,黎曼所说的“未公开的表达式”不止一个。
“姜还是老的辣,老穆勒完成高强度、大数据的计算和推导越来越困难,但他的战略眼光和数学直觉异常敏锐。”沈奇现在越来越懂穆勒教授,路遥知马力,和一个人接触久了,才能发现他真正的长处,以及缺点。
穆勒的办公室。
沈奇在黑板上写出了“双生匹配法”的设定原理,以及第一个表达式。
“老天!”穆勒震惊了,他盯着黑板,久久说不