第二二一章 四色(1 / 2)

小说:永不下车的信仰者 作者:阳电

迄今为止,提到“四色定理”,还无法用人类已掌握的数学来证明。

但这是否就意味着,人类需要接受计算机给出的,并非显明、仅仅是有限穷举而得到的所谓证明呢,这就是一个见仁见智的问题。

与数学界的诸多高深学问不同,四色定理,寻常人也一眼就能看懂,即便其背后蕴含的数学原则想必极为高深,却并不妨碍人类经由观察、思考,再加上一点人所特有的直觉洞察,主观上倾向于认为“这一猜想是正确的”。

即便如此,对计算机的有限穷举,算不算是严格的证明了四色定理呢;

方然对此持谨慎的否定态度。

之所以持否定态度,并非是说,在他眼中计算机的一切证明、推演,都毫无价值,而是在像“四色定理”这样的问题上,暴力验证手段,要面对的目标空间是无穷大,这时穷举法事实上已经失效,不论是人用纸和笔,还是计算机用逻辑电路与电磁波来进行,都不会改变这一原则性的事实。

在面对此类问题时,迄今为止,计算机并不被认为有这样一种能力:

越人类的分析、洞察与推理,独立解决这些人力所不能及的自然科学领域之难题。

换句话说,按it领域的一句公理,至少到目前为止还是不容置疑的总结,“人做不到的事,计算机同样做不到”。

这里的“能”与“不能”,是在不考虑时间、资源等因素的前提下,进行的判断。

就是对任何一个命题,倘若人,人类,人类文明,始终维持当前的认识水平,即便花费再长时间也无法解决,那么对计算机而言,即便同样有无限长的时间可用,这命题也注定会是无法解决的。

演绎到数学领域,原则上,只要是人证不出来的命题,计算机也一定证不出来。

这一判断,不仅在it领域,在自然科学领域也是一种共识,直到今天,也没有明确的迹象表示,计算机能够突破这样的限制,具备越人脑的智慧。

至于当下的人工智能,看名称,仿佛就是计算机也能因此而具有智慧,实质却是在架构层面的一种模仿,试图利用算法、乃至硬件来模拟人类大脑的神经元活动,从而具备此前为人所独有的学习、记忆、联想乃至推断能力。

指导思想大抵如此,具体到每一种实现策略,不论神经网络、还是深度学习,效果在本质上也都是相近的。

与人类的大脑相比,目前的ai体系,不论是在软件层面的算法和架构,还是在硬件层面的逻辑电路、存储器件,具有远人脑的数值计算能力和数值存储空间,然而,却一直没有实现远人类的意识和思维能力。

而“国际商用机器”在夏洛特的研中心,负责人工智能方向的aig1~5都主攻这一领域,在方然的aig4,“阿尔法”组的主要方向是新架构,即在不改变现有硬件基础——数字逻辑电路的条件下,提出创造性的新架构,试图创造出能力更加强大的人工智能,或者,让现有人工智能的算力需求大幅下降。

与前沿探索的“阿尔法”组不同,“贝塔”组的方向,则更加现实,专注于现有人工智能体系的调整、优化,在应用平台上混合ai与传统逻辑模块,提升系统的实际性能。

作为新手,一开始在“贝塔”组工作,这是很自然的安排。

夏洛特的信息基础研中心里,有若干aig这样的组,之前面试过方然的肯*汤普森则是中心的项目负责人之一,也是五个aig小组的总管,但他想必很忙,来到夏洛特中心很多天,方然都没在见过他本人。

除非是开讨论会,他倒是通过投影屏幕见过两三次,毕竟也和现场不一样。

目标明确,小组里负责带新人的工程师也挺友善,认识到自己要展现能力、显露才华,才能如愿以偿的留在研中心,方然很投入,和小组中资历更老的其他员工不一样,他每天都会准时去工作室,下班时间后,还会在住处的电脑前继续忙碌。

天资平平,眼前一切全凭实打实的努力,方然清楚自己的斤两。

不过这样的投入度,也不全是受眼前目标的驱使:在动身前几乎刺探、评估过夏洛特研中心的一切,对于“努力到什么程度才能留在ib,方然很有把握。

对人工智能,具体的讲,对未来的人工智能,究竟会展到一个什么样的程度,他的确很感兴趣,既然工作需要,索性就全身心的投入其中,先尝试解决内心早已有之、却始终没有解答的困惑:

正如四色定理的证明,原则上,并不能作为计算机越了人的证据;

他想知道,计算机、人工智能、自动化体系的能力上限,究竟在哪里,人的智慧、思维、能力,会不会是这一切新生事物的天花板。

人无法解决的问题,原则上,计算机更无法解决。

直到不久之前,不,直到坐在电脑前思考的这一刻,方然都清楚的知道,这句话还是工程界、计算机界乃至自然科学界的共识。

未来尚未可知,眼前的情形却不容置疑,

本站所有小说均来源于会员自主上传,如侵犯你的权益请联系我们,我们会尽快删除。
本站所有小说为转载作品,所有章节均由网友上传,转载至本站只是为了宣传本书让更多读者欣赏。
Copyright © 2024 https://m.pmzjq.com All Rights Reserved