都是无穷大,彼此之间也能分出高下,但要说发端于格奥尔格*康托尔的,彼此差距可以大到无穷多倍的阿列夫零、一、二……凡此种种,究竟对应什么样的实践意义,就完全无从下手。
当今时代的数学,前沿领域,不仅完全跳脱公众的眼界,甚至也位于大多数数学教学、实践者的视线之外。
由此,一般人往往会感慨,认为数学的奥秘深不可测。
但在方然看来,现代数学的前沿成就,以数论为领掣的高不可攀理论,地位,或许并不像它们在逻辑科学体系中的位置那样重要。
数学,即便再怎样繁复难解,毕竟只是理论。
其与物理的关系,也仿佛折纸,好似一张平坦纸张的客观世界,经由眼花缭乱的变幻折叠,最终成为对人类有意义的对象,这过程,是物理的,是纯客观的,而有着“科学之父”头衔的数学,不过是这变幻折叠的规则,手段。
这些规则和手段,其意义,终究还是要建立在折叠出的成品之上。